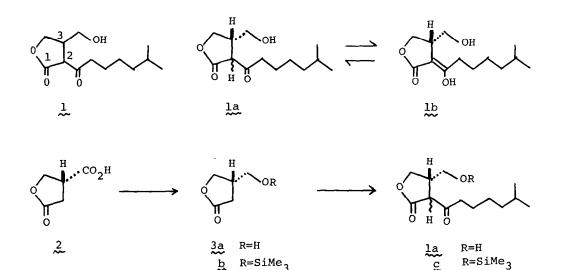
SYNTHESIS AND ABSOLUTE CONFIGURATION OF A-FACTOR, THE INDUCER OF STREPTOMYCIN BIOSYNTHESIS IN INACTIVE MUTANTS OF STREPTOMYCES GRISEUS


Kenji Mori*

Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan

Abstract: The absolute configuration at C-3 of A-factor, 2-(6-methylheptanoyl)-3-hydroxymethyl-4-butanolide la, was determined to be \underline{S} by synthesizing (3<u>S</u>)-(+)-A-factor.

A-factor is known to be the inducer of the biosynthesis of streptomycin in inactive mutants of <u>Streptomyces griseus</u>.¹ It also induces the formation of spores in asporophological modifications of <u>S</u>. <u>griseus</u>.¹ In 1976,Khokhlov and his co-workers proposed the structure of A-factor to be $(2\underline{S}, 3\underline{R})$ -<u>1</u> by chemical and spectroscopic studies.² The proposed gross structure was confirmed by a synthesis of (\pm) -<u>1</u>.³ As a β -keto lactone, A-factor can exist either as a keto-form <u>la</u> or as an enol-form <u>lb</u>. This makes it difficult to apply directly the Klyne lactone sector rule⁴ for the clarification of the absolute stereochemistry.⁵ We have now synthesized $(3\underline{S})$ -(+)-A-factor, establishing the $(3\underline{S})$ -stereochemistry of the natural product.

(-)-Paraconic acid 2 was chosen as the starting material, since its absolute configuration was known to be R by its conversion to (S)-(-)-methylsuccinic acid.⁶ Reduction of $(\underline{R}) - (-) - 1$, mp 57-58°; $[\alpha]_D^{23} - 59.6^\circ$ (MeOH) (lit.⁶ mp 48°; $[\alpha]_D^{30} + 49°$ (MeOH) for $(\underline{S}) - (+) - 1$), with $H_3B \cdot SMe_2$ in THF at 0-5° afforded $(\underline{S}) - (-) - 3$ -hydroxymethyl-4-butanolide 3a, $[\alpha]_D^{22} - 46.3°$ (CHCl₃).⁷ This was converted to the corresponding TMS ether 3b, bp 140-144°/26mm; n_D^{23} 1.4368; $[\alpha]_{D}^{23}$ -34.8° (ether), by treatment with $(Me_{3}Si)_{2}NH$ and $Me_{3}SiCl$ in $C_{5}H_{5}N$. The lactone enclate generated by treating 3b with 2.5 eq of $LiNPr_2^i$ in THF at -78° was acylated with 1.05 eq of 6-methylheptanoyl chloride at -78° to give lc. This was dissolved in EtOH-H $_2$ O (4 : 1) and the solution was heated under reflux for 10min. Subsequent work-up followed by silica gel chromatography afforded $(3\underline{S}) - (+) - A - factor \underline{la}$ as a waxy solid, $[\alpha]_{D}^{23} - 13.1^{\circ}$ (CHCl₃); CD(MeOH): 283.5 nm ($\Delta \epsilon$ + 0.699), 221 nm ($\Delta \epsilon$ + 0.420) [cf. natural A-factor² : 285 nm ($\Delta \epsilon$ + 0.349), 225 nm ($\Delta \epsilon$ + 0.215)].⁸ The CD spectral comparison proved the stereochemical identity of $(3\underline{S}) - (+) - A - factor la with the natural product.⁹ The$ CD data also suggested the higher optical purity (ca. x 2) of the synthetic Afactor than that of the natural one. Synthesis of the antipode as well as analogs of A-factor will be reported in due course.

Acknowledgements - I am grateful to Prof. T. Beppu and Mr. O. Hara, this De-

partment, for bioassay. Thanks are due to Drs. A. Matsuo and M. Horiba, Sumitomo Chemical Co., for CD measurements. I also thank Prof. H. Meguro, Tohoku University, for discussions on the CD data.

REFERENCES AND FOOTNOTES

- 1. A.S. Khokhlov, L.N. Anisova, I.I. Tovarova, E.M. Kleiner, I.V. Kovalenko, O.I. Krasilnikova, E.Ya. Kornitskaya and S.A. Pliner, Z. allgem. Mikrobiol., 13, 647 (1973).
- 2. E.M. Kleiner, S.A. Pliner, V.S. Soifer, V.V. Onoprienko, T.A. Balasheva, B.V. Rozynov and A.S. Khokhlov, Bioorg. Khim., 2, 1142 (1976). In this reference the authors states that the stereochemistry at C-3 of 1 is R, while their formula of A-factor indicates 3S-configuration.
- E.M. Kleiner, V.V. Onoprienko, S.A. Pliner, V.S. Soifer and A.S. Khokhlov, 3. Bioorg. Khim., 3, 424 (1977). J.P. Jennings, W. Klyne and P.M. Scopes, <u>J. Chem. Soc.</u>,7211, 7229 (1965). The previous stereochemical assignment was based on this rule?
- 4.
- 5.
- J.-F. Tocanne and C. Asselineau, Bull. Soc. chim. France, 3346 (1965). (±)-Paraconic acid was carefully resolved with $(\underline{R}) (+) \alpha$ -phenethylamine to en-6. sure the high optical purity of (R)-(-)-1.
- 7. Unfortunately determination of the optical purity of 3a by analyzing itself or its (S)-(-)-MTPA ester (α -methoxy- α -trifluoromethylphenylacetate) was unsuccessful. The hydroxylactone 3a as well as A-factor 1a itself was highly susceptible to racemization in the presence of a base or an acid due to intramolecular transesterification. Careless work-up of 3a or la led tc
- partial or complete racemization. IR (film) ν_{max} 3460 (m), 1765 (s), 1720 (s), 1640 (w), 1170 (s), 1025 (s) cm⁻¹; UV λ_{max} 283.5 (ϵ 250), 255 (ϵ 855) nm; ¹H-NMR (60 MHz, CDCl₃) δ 0.82 (6H, d, J=6Hz), 1.0-2.0 (9H, br), 2.5-3.3 (3H, m), 3.5-3.8 (2H, m), 3.7-4.2 (2H, m); ¹³C-NMR (25 MHz, CDCl₃) δ 22.260, 23.167, 26.443, 27.466, 38.348, 39.225, 42.297, 54.758, 61.310, 69.120, 172.728, 203.062; MS : m/z 242.1604 8. $(M^+ = C_{13}H_{22}O_4)$.
- 9. Since the C-2 position of la is readily epimerizable via keto-enol tautomerization, the configuration at that position is uncertain, (2S, 3S)-la may be more thermodynamically stable than $(2\underline{R}, 3\underline{S}) - \underline{1}$. Our synthetic $(3\underline{S})$ la was bioactive at 0.01 μ g/disc as the inducer of streptomycin biosynthesis in inactive mutants of Streptomyces griseus.

(Received in Japan 27 May 1981)